• 5
  • Health A to Z
  • 5
  • Gastric Cancer Treatment (PDQ®): Treatment – Health Professional Information [NCI]

Gastric Cancer Treatment (PDQ®): Treatment – Health Professional Information [NCI]

Incidence and Mortality Estimated new cases and deaths from gastric cancer in the United States in 2019:[ 1] New cases: 27,510. Deaths: 11,140. Epidemiology Management of adenocarcinoma histology, which accounts for 90% to 95% of all gastric malignancies, is discussed in this summary. There are changing epidemiologic…

Gastric Cancer Treatment (PDQ®): Treatment – Health Professional Information [NCI]

This information is produced and provided by the National Cancer Institute (NCI). The information in this topic may have changed since it was written. For the most current information, contact the National Cancer Institute via the Internet web site at http://cancer.gov or call 1-800-4-CANCER.

General Information About Gastric Cancer

Incidence and Mortality

Estimated new cases and deaths from gastric cancer in the United States in 2019:[1]

  • New cases: 27,510.
  • Deaths: 11,140.

Epidemiology

Management of adenocarcinoma histology, which accounts for 90% to 95% of all gastric malignancies, is discussed in this summary. There are changing epidemiologic patterns in the United States regarding the anatomic location of esophagogastric cancers, with a trend of decreased occurrence of distal or noncardia gastric cancers.[2] However, in persons aged 25 to 39 years, there has been an increase in the incidence of noncardia gastric cancers from 0.27 cases per 100,000 individuals (1977–1981) to 0.45 cases per 100,000 individuals (2002–2006).[2] Additional studies are needed to confirm the observed increases in noncardia gastric cancers in this specific age group.

In contrast to the overall stable trend for noncardia gastric cancers, earlier studies demonstrated an increased incidence of adenocarcinomas of the gastric cardia of 4% to 10% per year from the mid-1970s to the late 1980s.[3] Similarly, the incidence of gastroesophageal junction adenocarcinomas increased sharply, from 1.22 cases per 100,000 individuals (1973–1978) to 2.00 cases per 100,000 individuals (1985–1990).[4] Since that time, the incidence has remained steady at 1.94 cases per 100,000 individuals (2003–2008).[4] More recent data demonstrate that the incidence of gastric cardia cancers has been relatively stable, although an increase has been observed, from 2.4 cases per 100,000 individuals (1977–1981) to 2.9 cases per 100,000 individuals (2001–2006) in the Caucasian population.[2] The reasons for these temporal changes in incidence are unclear.

Risk Factors

In the United States, gastric cancer ranks 14th in incidence among the major types of cancer. While the precise etiology is unknown, acknowledged risk factors for gastric cancer include the following:[5,6,7]

  • Helicobacter pylori gastric infection.
  • Advanced age.
  • Male gender.
  • Diet low in fruits and vegetables.
  • Diet high in salted, smoked, or preserved foods.
  • Chronic atrophic gastritis.
  • Intestinal metaplasia.
  • Pernicious anemia.
  • Gastric adenomatous polyps.
  • Family history of gastric cancer.
  • Cigarette smoking.
  • Ménétrier disease (giant hypertrophic gastritis).
  • Epstein-Barr virus.
  • Familial syndromes (including familial adenomatous polyposis).

Prognosis and Survival

The prognosis of patients with gastric cancer is related to tumor extent and includes both nodal involvement and direct tumor extension beyond the gastric wall.[8,9] Tumor grade may also provide some prognostic information.[10]

In localized distal gastric cancer, more than 50% of patients can be cured. However, early-stage disease accounts for only 10% to 20% of all cases diagnosed in the United States. The remaining patients present with metastatic disease in either regional or distant sites. The overall survival rate in these patients at 5 years ranges from almost no survival for patients with disseminated disease to almost 50% survival for patients with localized distal gastric cancers confined to resectable regional disease. Even with apparent localized disease, the 5-year survival rate of patients with proximal gastric cancer is only 10% to 15%. Although the treatment of patients with disseminated gastric cancer may result in palliation of symptoms and some prolongation of survival, long remissions are uncommon.

Gastrointestinal stromal tumors occur most commonly in the stomach. (Refer to the PDQ summary on Gastrointestinal Stromal Tumors Treatment for more information.)

Related Summaries

Other PDQ summaries containing information related to gastric cancer include the following:

  • Stomach (Gastric) Cancer Prevention.
  • Stomach (Gastric) Cancer Screening.
  • Unusual Cancers of Childhood (childhood cancer of the stomach).

References:

  1. American Cancer Society: Cancer Facts and Figures 2019. Atlanta, Ga: American Cancer Society, 2019. Available online. Last accessed January 23, 2019.
  2. Anderson WF, Camargo MC, Fraumeni JF Jr, et al.: Age-specific trends in incidence of noncardia gastric cancer in US adults. JAMA 303 (17): 1723-8, 2010.
  3. Blot WJ, Devesa SS, Kneller RW, et al.: Rising incidence of adenocarcinoma of the esophagus and gastric cardia. JAMA 265 (10): 1287-9, 1991.
  4. Buas MF, Vaughan TL: Epidemiology and risk factors for gastroesophageal junction tumors: understanding the rising incidence of this disease. Semin Radiat Oncol 23 (1): 3-9, 2013.
  5. Kurtz RC, Sherlock P: The diagnosis of gastric cancer. Semin Oncol 12 (1): 11-8, 1985.
  6. Scheiman JM, Cutler AF: Helicobacter pylori and gastric cancer. Am J Med 106 (2): 222-6, 1999.
  7. Fenoglio-Preiser CM, Noffsinger AE, Belli J, et al.: Pathologic and phenotypic features of gastric cancer. Semin Oncol 23 (3): 292-306, 1996.
  8. Siewert JR, Böttcher K, Stein HJ, et al.: Relevant prognostic factors in gastric cancer: ten-year results of the German Gastric Cancer Study. Ann Surg 228 (4): 449-61, 1998.
  9. Nakamura K, Ueyama T, Yao T, et al.: Pathology and prognosis of gastric carcinoma. Findings in 10,000 patients who underwent primary gastrectomy. Cancer 70 (5): 1030-7, 1992.
  10. Adachi Y, Yasuda K, Inomata M, et al.: Pathology and prognosis of gastric carcinoma: well versus poorly differentiated type. Cancer 89 (7): 1418-24, 2000.

Cellular Classification of Gastric Cancer

There are two major types of gastric adenocarcinoma including the following:

  • Intestinal.
  • Diffuse.

Intestinal adenocarcinomas are well differentiated, and the cells tend to arrange themselves in tubular or glandular structures. The terms tubular, papillary, and mucinous are assigned to the various types of intestinal adenocarcinomas. Rarely, adenosquamous cancers can occur.

Diffuse adenocarcinomas are undifferentiated or poorly differentiated, and they lack a gland formation. Clinically, diffuse adenocarcinomas can give rise to infiltration of the gastric wall (i.e., linitis plastica).

Some tumors can have mixed features of intestinal and diffuse types.

Stage Information for Gastric Cancer

AJCC Prognostic Stage Groups and TNM Definitions

The American Joint Committee on Cancer (AJCC) has designated staging by TNM (tumor, node, metastasis) classification to define gastric cancer.[1]

Pathological (pTNM)

Table 1. Definitions of pTNM Stage 0a
Stage TNM Description
T = primary tumor; N = regional lymph node; M = distant metastasis; p = pathological.
a Reprinted with permission from AJCC: Stomach. In: Amin MB, Edge SB, Greene FL, et al., eds.:AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 203–20.
0 Tis, N0, M0 Tis = Carcinomain situ: intraepithelial tumor without invasion of the lamina propria, high-grade dysplasia.
N0 = No regional lymph node metastasis.
M0 = No distant metastasis.
Table 2. Definitions of pTNM Stages IA and IBa
Stage TNM Description
T = primary tumor; N = regional lymph node; M = distant metastasis; p = pathological.
a Reprinted with permission from AJCC: Stomach. In: Amin MB, Edge SB, Greene FL, et al., eds.:AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 203–20.
b A tumor may penetrate the muscularis propria with extension into the gastrocolic or gastrohepatic ligaments, or into the greater or lesser omentum, without perforation of the visceral peritoneum covering these structures. In this case, the tumor is classified T3. If there is perforation of the visceral peritoneum covering the gastric ligaments or the omentum, the tumor should be classified T4.
IA T1, N0, M0 T1 = Tumor invades lamina propria, muscularis mucosae, or submucosa.
–T1a = Tumor invades lamina propria or muscularis mucosae.
–T1b = Tumor invades submucosa.
N0 = No regional lymph node metastasis.
M0 = No distant metastasis.
IB T1, N1, M0 T1 = Tumor invades lamina propria, muscularis mucosae, or submucosa.
–T1a = Tumor invades lamina propria or muscularis mucosae.
–T1b = Tumor invades submucosa.
N1 = Metastases in 1 or 2 regional lymph nodes.
M0 = No distant metastasis.
T2, N0, M0 T2 = Tumor invades muscularis propria.b
N0 = No regional lymph node metastasis.
M0 = No distant metastasis.
Table 3. Definitions of pTNM Stages IIA and IIBa
Stage TNM Description
T = primary tumor; N = regional lymph node; M = distant metastasis; p = pathological.
a Reprinted with permission from AJCC: Stomach. In: Amin MB, Edge SB, Greene FL, et al., eds.:AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 203–20.
b A tumor may penetrate the muscularis propria with extension into the gastrocolic or gastrohepatic ligaments, or into the greater or lesser omentum, without perforation of the visceral peritoneum covering these structures. In this case, the tumor is classified T3. If there is perforation of the visceral peritoneum covering the gastric ligaments or the omentum, the tumor should be classified T4.
c The adjacent structures of the stomach include the spleen, transverse colon, liver, diaphragm, pancreas, abdominal wall, adrenal gland, kidney, small intestine, and retroperitoneum.
d Intramural extension to the duodenum or esophagus is not considered invasion of an adjacent structure, but is classified using the depth of the greatest invasion in any of these sites.
IIA T1, N2, M0 T1 = Tumor invades lamina propria, muscularis mucosae, or submucosa.
–T1a = Tumor invades lamina propria or muscularis mucosae.
–T1b = Tumor invades submucosa.
N2 = Metastases in 3 to 6 regional lymph nodes.
M0 = No distant metastasis.
T2, N1, M0 T2 = Tumor invades muscularis propria.b
N1 = Metastases in 1 or 2 regional lymph nodes.
M0 = No distant metastasis.
T3, N0, M0 T3 = Tumor penetrates the subserosal connective tissue without invasion of the visceral peritoneum or adjacent structures.c,d
N0 = No regional lymph node metastasis.
M0 = No distant metastasis.
IIB T1, N3a, M0 T1 = Tumor invades lamina propria, muscularis mucosae, or submucosa.
–T1a = Tumor invades lamina propria or muscularis mucosae.
–T1b = Tumor invades submucosa.
N3a = Metastasis in 7 to 15 regional lymph nodes.
M0 = No distant metastasis.
T2, N2, M0 T2 = Tumor invades muscularis propria.b
N2 = Metastases in 3 to 6 regional lymph nodes.
M0 = No distant metastasis.
T3, N1, M0 T3 = Tumor penetrates the subserosal connective tissue without invasion of the visceral peritoneum or adjacent structures.c,d
N1 = Metastasis in 1or 2 regional lymph nodes.
M0 = No distant metastasis.
T4a, N0, M0 T4a = Tumor invades serosa (visceral peritoneum).
N0 = No regional lymph node metastasis.
M0 = No distant metastasis.
Table 4. Definitions of pTNM Stages IIIA, IIIB, and IIICa
Stage TNM Description
T = primary tumor; N = regional lymph node; M = distant metastasis; p = pathological.
a Reprinted with permission from AJCC: Stomach. In: Amin MB, Edge SB, Greene FL, et al., eds.:AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 203–20.
b A tumor may penetrate the muscularis propria with extension into the gastrocolic or gastrohepatic ligaments, or into the greater or lesser omentum, without perforation of the visceral peritoneum covering these structures. In this case, the tumor is classified T3. If there is perforation of the visceral peritoneum covering the gastric ligaments or the omentum, the tumor should be classified T4.
c The adjacent structures of the stomach include the spleen, transverse colon, liver, diaphragm, pancreas, abdominal wall, adrenal gland, kidney, small intestine, and retroperitoneum.
d Intramural extension to the duodenum or esophagus is not considered invasion of an adjacent structure, but is classified using the depth of the greatest invasion in any of these sites.
IIIA T2, N3a, M0 T2 = Tumor invades muscularis propria.b
N3a = Metastasis in 7 to 15 regional lymph nodes.
M0 = No distant metastasis.
T3, N2, M0 T3 = Tumor penetrates the subserosal connective tissue without invasion of the visceral peritoneum or adjacent structures.c,d
N2 = Metastasis in 3 to 6 regional lymph nodes.
M0 = No distant metastasis.
T4a, N1, M0 T4a = Tumor invades serosa (visceral peritoneum).
N1 = Metastasis in 1or 2 regional lymph nodes.
M0 = No distant metastasis.
T4a, N2, M0 T4a = Tumor invades serosa (visceral peritoneum).
N2 = Metastasis in 3 to 6 regional lymph nodes.
M0 = No distant metastasis.
T4b, N0, M0 T4b = Tumor invades adjacent structures/organs.c,d
N0 = No regional lymph node metastasis.
M0 = No distant metastasis.
IIIB T1, N3b, M0 T1 = Tumor invades lamina propria, muscularis mucosae, or submucosa.
N3b = Metastases in 16 or more regional lymph nodes.
M0 = No distant metastasis.
T2, N3b, M0 T2 = Tumor invades muscularis propria.b
N3b = Metastases in 16 or more regional lymph nodes.
M0 = No distant metastasis.
T3, N3a, M0 T3 = Tumor penetrates the subserosal connective tissue without invasion of the visceral peritoneum or adjacent structures.c,d
N3a = Metastasis in 7 to 15 regional lymph nodes.
M0 = No distant metastasis.
T4a, N3a, M0 T4a = Tumor invades serosa (visceral peritoneum).
N3a = Metastasis in 7 to 15 regional lymph nodes.
M0 = No distant metastasis.
T4b, N1, M0 T4b = Tumor invades adjacent structures/organs.c,d
N1 = Metastasis in 1or 2 regional lymph nodes.
M0 = No distant metastasis.
T4b, N2, M0 T4b = Tumor invades adjacent structures/organs.c,d
N2 = Metastasis in 3 to 6 regional lymph nodes.
M0 = No distant metastasis.
IIIC T3, N3b, M0 T3 = Tumor penetrates the subserosal connective tissue without invasion of the visceral peritoneum or adjacent structures.cd
N3b = Metastasis in 16 or more regional lymph nodes.
M0 = No distant metastasis.
T4a, N3b, M0 T4a = Tumor invades serosa (visceral peritoneum).
N3b = Metastasis in 16 or more regional lymph nodes.
M0 = No distant metastasis.
T4b, N3a, M0 T4b = Tumor invades adjacent structures/organs.c,d
N3a = Metastasis in 7 to 15 regional lymph nodes.
M0 = No distant metastasis.
T4b, N3b, M0 T4b = Tumor invades adjacent structures/organs.c,d
N3b = Metastasis in 16 or more regional lymph nodes.
M0 = No distant metastasis.
Table 5. Definitions of pTNM Stage IVa
Stage TNM Description
T = primary tumor; N = regional lymph node; M = distant metastasis; p = pathological.
a Reprinted with permission from AJCC: Stomach. In: Amin MB, Edge SB, Greene FL, et al., eds.:AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 203–20.
b A tumor may penetrate the muscularis propria with extension into the gastrocolic or gastrohepatic ligaments, or into the greater or lesser omentum, without perforation of the visceral peritoneum covering these structures. In this case, the tumor is classified T3. If there is perforation of the visceral peritoneum covering the gastric ligaments or the omentum, the tumor should be classified T4.
c The adjacent structures of the stomach include the spleen, transverse colon, liver, diaphragm, pancreas, abdominal wall, adrenal gland, kidney, small intestine, and retroperitoneum.
d Intramural extension to the duodenum or esophagus is not considered invasion of an adjacent structure, but is classified using the depth of the greatest invasion in any of these sites.
IV Any T, Any N, M1 TX = Primary tumor cannot be assessed.
T0 = No evidence of primary tumor.
Tis = Carcinomain situ: intraepithelial tumor without invasion of the lamina propria, high-grade dysplasia.
T1 = Tumor invades lamina propria, muscularis mucosae, or submucosa.
–T1a = Tumor invades lamina propria or muscularis mucosae.
–T1b = Tumor invades submucosa.
T2 = Tumor invades muscularis propria.b
T3 = Tumor penetrates the subserosal connective tissue without invasion of the visceral peritoneum or adjacent structures.c,d
T4 = Tumor invades the serosa (visceral peritoneum) or adjacent structures.c,d
–T4a = Tumor invades serosa (visceral peritoneum).
–T4b = Tumor invades adjacent structures/organs.
NX = Regional lymph node(s) cannot be assessed.
N0 = No regional lymph node metastasis.
N1 = Metastases in 1 or 2 regional lymph nodes.
N2 = Metastases in 3 to 6 regional lymph nodes.
N3 = Metastases in ≥7 regional lymph nodes.
–N3a = Metastases in 7 to 15 regional lymph nodes.
–N3b = Metastases in 16 or more regional lymph nodes.
M1 = Distant metastasis.

References:

  1. Stomach. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 203–20.

Treatment Option Overview

Radical surgery represents the standard form of therapy that has curative intent. However, the incidences of local failure in the tumor bed and regional lymph nodes, and distant failures via hematogenous or peritoneal routes, remain high.[1] As such, comprehensive staging and evaluation with a multidisciplinary team to determine roles of neoadjuvant, perioperative, and adjuvant combination chemotherapy, surgery, and external-beam radiation therapies should be considered.

Investigators in Europe evaluated the role of perioperative chemotherapy without radiation therapy.[2] In a randomized phase III trial (MRC-ST02 [NCT00002615]), patients with stage II or higher adenocarcinoma of the stomach or of the lower third of the esophagus were assigned to receive three cycles of epirubicin, cisplatin, and continuous infusion 5-fluorouracil (5-FU) before and after surgery or to receive surgery alone. Compared with the surgery group, the perioperative chemotherapy group had a significantly higher likelihood of progression-free survival (hazard ratio [HR] for progression, 0.66; 95% confidence interval [CI], 0.53–0.81; P < .001) and of overall survival (OS) (HRdeath, 0.75; 95% CI, 0.60–0.93; P = .009). Five-year OS was 36.3% (95% CI, 29.5%‒43.0%) for the perioperative chemotherapy group and 23% (95% CI, 16.6%‒29.4%) for the surgery group.[2][Level of evidence: 1iiA]

In a phase III Intergroup trial (SWOG-9008 [NCT01197118]), 559 patients with completely resected stage IB to stage IV (M0) adenocarcinoma of the stomach and gastroesophageal junction were randomly assigned to receive surgery alone or surgery plus postoperative chemotherapy (5-FU and leucovorin) and concurrent radiation therapy (45 Gy). With more than 10 years’ median follow-up, a significant survival benefit was reported for patients who received adjuvant combined modality therapy.[3][Level of evidence: 1iiA] Median OS was 35 months for the adjuvant chemoradiation therapy group and 27 months for the surgery-alone arm (P = .0046). Median relapse-free survival was 27 months in the chemoradiation arm compared with 19 months in the surgery-alone arm (P < .001).

References:

  1. Gunderson LL, Sosin H: Adenocarcinoma of the stomach: areas of failure in a re-operation series (second or symptomatic look) clinicopathologic correlation and implications for adjuvant therapy. Int J Radiat Oncol Biol Phys 8 (1): 1-11, 1982.
  2. Cunningham D, Allum WH, Stenning SP, et al.: Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med 355 (1): 11-20, 2006.
  3. Smalley SR, Benedetti JK, Haller DG, et al.: Updated analysis of SWOG-directed intergroup study 0116: a phase III trial of adjuvant radiochemotherapy versus observation after curative gastric cancer resection. J Clin Oncol 30 (19): 2327-33, 2012.

Stage 0 Gastric Cancer

Standard Treatment Options for Stage 0 Gastric Cancer

Standard treatment options for stage 0 gastric cancer include the following:

  1. Surgery.
  2. Endoscopic mucosal resection (EMR).

Surgery

Stage 0 is gastric cancer confined to mucosa. Experience in Japan, where stage 0 is diagnosed frequently, indicates that more than 90% of patients treated by gastrectomy with lymphadenectomy will survive beyond 5 years. An American series has confirmed these results.[1]

Endoscopic mucosal resection (EMR)

EMR has been studied in Japan and throughout Asia in patients with early-stage tumors with good-risk features (Tis or T1a, diameter ≤2 cm, predominantly differentiated type, without ulcerative findings) that have a lower risk of nodal metastasis. Intramucosal tumors have a lower risk of nodal metastasis than submucosal tumors.[2] Careful patient selection by the above criteria, treatment with an experienced endoscopist, and close surveillance should be considered.

Evidence (EMR):

  1. A prospective trial of EMR included 445 patients with intramucosal carcinoma (a total of 479 tumors) treated in Tokyo between 1987 and 1998. Complete resection was recommended for patients with evidence of submucosal invasion, blood vessel involvement, and/or positive margins. Of the 405 patients with intramucosal disease, 278 underwent complete resection, with 2% local recurrence treated with curative intent and 100% disease-free survival at a median follow-up of 38 months. In those with incomplete/inevaluable resections, 18 of 127 patients recurred locally and underwent curative surgery.[3][Level of evidence: 3iiiDii]

Current Clinical Trials

Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

References:

  1. Green PH, O’Toole KM, Slonim D, et al.: Increasing incidence and excellent survival of patients with early gastric cancer: experience in a United States medical center. Am J Med 85 (5): 658-61, 1988.
  2. Japanese Gastric Cancer Association: Japanese gastric cancer treatment guidelines 2014 (ver. 4). Gastric Cancer 20 (1): 1-19, 2017.
  3. Ono H, Kondo H, Gotoda T, et al.: Endoscopic mucosal resection for treatment of early gastric cancer. Gut 48 (2): 225-9, 2001.

Stage I Gastric Cancer

Standard Treatment Options for Stage I Gastric Cancer

Standard treatment options for stage I gastric cancer include the following:

  1. Surgical resection with one of the following surgical procedures:
    • Distal subtotal gastrectomy (if the lesion is not in the fundus or at the cardioesophageal junction).
    • Proximal subtotal gastrectomy or total gastrectomy, both with distal esophagectomy (if the lesion involves the cardia). These tumors often involve the submucosal lymphatics of the esophagus.
    • Total gastrectomy (if the tumor involves the stomach diffusely or arises in the body of the stomach and extends to within 6 cm of the cardia or distal antrum).

    Regional lymphadenectomy is recommended with all of the above procedures. Splenectomy is not routinely performed.[1]

  2. Endoscopic mucosal resection (EMR) for select patients with stage IA gastric cancer.
  3. Postoperative chemoradiation therapy for patients with node-positive (T1 N1) and muscle-invasive (T2 N0) disease.[2]

Surgical resection

Surgical resection including regional lymphadenectomy is the treatment of choice for patients with stage I gastric cancer.[1] If the lesion is not in the cardioesophageal junction and does not diffusely involve the stomach, subtotal gastrectomy is the procedure of choice, because it has been demonstrated to provide equivalent survival when compared with total gastrectomy and is associated with decreased morbidity.[3][Level of evidence: 1iiA] When the lesion involves the cardia, proximal subtotal gastrectomy or total gastrectomy (including a sufficient length of esophagus) may be performed with curative intent. If the lesion diffusely involves the stomach, total gastrectomy is required. At a minimum, surgical resection includes greater and lesser curvature perigastric regional lymph nodes. Note that in patients with stage I gastric cancer, perigastric lymph nodes may contain cancer.

Endoscopic mucosal resection (EMR)

EMR has been studied in Japan and throughout Asia in patients with early-stage tumors with good risk features (Tis or T1a, diameter ≤2 cm, predominantly differentiated type, without ulcerative findings) that have a lower risk of nodal metastasis. Intramucosal tumors have a lower risk of nodal metastasis than submucosal tumors.[4] Careful patient selection by the above criteria, treatment with an experienced endoscopist, and close surveillance should be considered.

Evidence (EMR):

  1. A prospective trial of EMR included 445 patients with intramucosal carcinoma (a total of 479 tumors) treated in Tokyo between 1987 and 1998. Complete resection was recommended for patients with evidence of submucosal invasion, blood vessel involvement, and/or positive margins. Of the 405 patients with intramucosal disease, 278 underwent complete resection, with 2% local recurrence treated with curative intent and 100% disease-free survival at a median follow-up of 38 months. In those with incomplete/inevaluable resections, 18 of 127 patients recurred locally and underwent curative surgery.[5][Level of evidence: 3iiiDii]

Postoperative chemoradiation therapy

In patients with node-positive (T1 N1) and muscle-invasive (T2 N0) disease, postoperative chemoradiation therapy may be considered.

Evidence (postoperative chemoradiation therapy):

  1. A prospective multi-institution phase III trial (SWOG-9008 [NCT01197118]) evaluated postoperative combined chemoradiation therapy versus surgery alone in 559 patients with completely resected stage IB to stage IV (M0) adenocarcinoma of the stomach and gastroesophageal junction and reported a significant survival benefit with adjuvant combined modality therapy.[2][Level of evidence: 1iiA]
    • With more than 10 years of follow-up, median survival was 35 months for the adjuvant chemoradiation therapy group and 27 months for the surgery-alone arm (P = .0046).
    • Median relapse-free survival was 27 months in the chemoradiation arm compared with 19 months in the surgery-alone arm (P < .001). Improvement was primarily seen for locoregional recurrence risk (improvement from 47% for surgery vs. 29% for chemoradiation).[2] However, only 36 patients in the trial had stage IB tumors (18 patients in each arm).[6]

    Because the prognosis is relatively favorable for patients with completely resected stage IB disease, the effectiveness of adjuvant chemoradiation therapy for this group is less clear.

Treatment Options Under Clinical Evaluation for Stage I Gastric Cancer

Treatment options under clinical evaluation for stage I gastric cancer include the following:

  • Neoadjuvant chemoradiation therapy such as in the closed SWOG-S0425 trial, and the RTOG-9904 (NCT00003862) trial, which is completed.[7]

Current Clinical Trials

Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

References:

  1. Brennan MF, Karpeh MS Jr: Surgery for gastric cancer: the American view. Semin Oncol 23 (3): 352-9, 1996.
  2. Smalley SR, Benedetti JK, Haller DG, et al.: Updated analysis of SWOG-directed intergroup study 0116: a phase III trial of adjuvant radiochemotherapy versus observation after curative gastric cancer resection. J Clin Oncol 30 (19): 2327-33, 2012.
  3. Bozzetti F, Marubini E, Bonfanti G, et al.: Subtotal versus total gastrectomy for gastric cancer: five-year survival rates in a multicenter randomized Italian trial. Italian Gastrointestinal Tumor Study Group. Ann Surg 230 (2): 170-8, 1999.
  4. Japanese Gastric Cancer Association: Japanese gastric cancer treatment guidelines 2014 (ver. 4). Gastric Cancer 20 (1): 1-19, 2017.
  5. Ono H, Kondo H, Gotoda T, et al.: Endoscopic mucosal resection for treatment of early gastric cancer. Gut 48 (2): 225-9, 2001.
  6. Kelsen DP: Postoperative adjuvant chemoradiation therapy for patients with resected gastric cancer: intergroup 116. J Clin Oncol 18 (21 Suppl): 32S-4S, 2000.
  7. Ajani JA, Winter K, Okawara GS, et al.: Phase II trial of preoperative chemoradiation in patients with localized gastric adenocarcinoma (RTOG 9904): quality of combined modality therapy and pathologic response. J Clin Oncol 24 (24): 3953-8, 2006.

Stages II and III Gastric Cancer

Standard Treatment Options for Stages II and III Gastric Cancer

Standard treatment options for stage II gastric cancer and stage III gastric cancer include the following:

  1. Surgical resection (after discussion with a multidisciplinary team regarding the role of perioperative and adjuvant therapy) may include one of the following surgical procedures:
    • Distal subtotal gastrectomy (if the lesion is not in the fundus or at the cardioesophageal junction).
    • Proximal subtotal gastrectomy or total gastrectomy (if the lesion involves the cardia).
    • Total gastrectomy (if the tumor involves the stomach diffusely or arises in the body of the stomach and extends to within 6 cm of the cardia).

    Regional lymphadenectomy is recommended with all of the above procedures. Splenectomy is not routinely performed.[1]

  2. Perioperative chemotherapy.[2]
  3. Postoperative (adjuvant) chemoradiation therapy.[3]
  4. Postoperative (adjuvant) chemotherapy.

No randomized trials of adjuvant chemoradiation versus perioperative chemotherapy have been undertaken.

Surgical resection

Due to high risk of locoregional and distant recurrence, consideration for perioperative and postoperative therapy should be considered in addition to surgery.

Surgical resection with regional lymphadenectomy is the treatment of choice for patients with stages II and III gastric cancer and all eligible patients undergo surgery.[1] If the lesion is not in the cardioesophageal junction and does not diffusely involve the stomach, subtotal gastrectomy is the procedure of choice. When the lesion involves the cardia, proximal subtotal gastrectomy or total gastrectomy may be performed with curative intent. If the lesion diffusely involves the stomach, total gastrectomy and appropriate lymph node resection may be required. The role of extended lymph node (D2) dissection is uncertain [4] and in some series is associated with increased morbidity.[5,6] As many as 15% of selected stage III patients can be cured by surgery alone, particularly if lymph node involvement is minimal (<7 lymph nodes).

Perioperative chemotherapy

Investigators in Europe evaluated the role of perioperative chemotherapy without radiation therapy.[2]

Evidence (perioperative chemotherapy):

  1. In the randomized phase III MAGIC (NCT00002615) trial, patients with stage II or higher adenocarcinoma of the stomach or of the lower third of the esophagus were assigned to receive three cycles of epirubicin, cisplatin, and continuous infusion 5-fluorouracil (5-FU) (ECF) before and after surgery or to receive surgery alone.[2]
    • Compared with the surgery group, the perioperative chemotherapy group had a significantly higher likelihood of progression-free survival (hazard ratio [HR] for progression, 0.66; 95% confidence interval [CI], 0.53–0.81; P < .001) and of overall survival (OS) (HRdeath, 0.75; 95% CI, 0.60–0.93; P = .009).
    • Five-year OS was 36.3% (95% CI, 29.5%‒43.0%) for the perioperative chemotherapy group and 23% (95% CI, 16.6%‒29.4%) for the surgery group.[2][Level of evidence: 1iiA]
  2. In the randomized phase III AIO-FLOT4 (NCT01216644) trial, which was presented in abstract form, 716 patients with stage IB to stage III resectable gastric or gastroesophageal adenocarcinoma were randomly assigned to receive perioperative chemotherapy with docetaxel, oxaliplatin, and 5-FU/leucovorin (FLOT) or epirubicin, cisplatin, and 5-FU or capecitabine (ECF/ECX).[7][Level of evidence: 1iiA]
    • Median OS was 50 months with FLOT and 35 months with ECF/ECX (HR, 0.77 [0.63-0.94]; P = .0004).

Postoperative (adjuvant) chemoradiation therapy

Postoperative chemoradiation therapy may be considered for patients with stages II and III gastric cancer who have not received neoadjuvant therapy.

Evidence (postoperative (adjuvant) chemoradiation therapy):

  1. A prospective multi-institution phase III trial (SWOG-9008 [NCT01197118]) evaluated postoperative combined chemoradiation therapy compared with surgery alone in 559 patients with completely resected stage IB to stage IV (M0) adenocarcinoma of the stomach and gastroesophageal (GE) junction and reported a significant survival benefit with adjuvant combined modality therapy.[3][Level of evidence: 1iiA]
    • With more than 10 years’ follow-up, median survival was 35 months for the adjuvant chemoradiation therapy arm and 27 months for the surgery-alone arm (P = .0046).
    • Median relapse-free survival was 27 months in the chemoradiation arm compared with 19 months in the surgery-alone arm (P < .001). Improvement was primarily seen for locoregional recurrence risk (improvement from 47% for surgery vs. 29% for chemoradiation).[3] However, only 36 patients in the trial had stage IB tumors (18 patients in each arm).[8]
  2. Attempts to evaluate the role of more intensive chemotherapy regimens in combination with radiation in the Cancer and Leukemia Group B study (CALGB-80101 [NCT00052910]) demonstrated no survival benefit. The 546 patients who had undergone curative resection of stage IB to stage IV (M0) gastric or GE junction adenocarcinoma received postoperative 5-FU with leucovorin before and after radiation or postoperative ECF before and after combined radiation therapy.[9]
    • The 5-year OS rates were 44% in both arms.
  3. In a phase III Dutch trial (CRITICS [NCT00407186]) of 788 patients with stage IB to stage IVA gastric/GE junction adenocarcinoma patients received preoperative chemotherapy and surgery, and then were randomly assigned to receive postoperative chemotherapy or chemoradiotherapy.[10] Adjuvant chemoradiation did not improve survival in those who received neoadjuvant chemotherapy.
    • Median OS was 43 months in the chemotherapy arm and 37 months in the chemoradiotherapy group (95% CI, 0.84–1.22; P = .90).

Postoperative (adjuvant) chemotherapy

Investigators in Europe evaluated the role of postoperative chemotherapy without radiation therapy.[2]

Evidence (postoperative [adjuvant] chemotherapy):

  1. Japanese investigators randomly assigned 1,059 patients with stage II or III gastric cancer who had undergone a D2 gastrectomy to receive either 1 year of S-1, an oral fluoropyrimidine not available in the United States, or follow-up after surgery alone.[11] Patients were randomly assigned in a 1:1 fashion.
    • The 3-year OS rate was 80.1% in the S-1 group and 70.1% in the surgery-only group. The HRdeath in the S-1 group, as compared with the surgery-only group, was 0.68 (95% CI, 0.52–0.87; P = .003).[11][Level of evidence: 1iiA]
  2. Investigators in Asia evaluated the role of capecitabine/oxaliplatin as adjuvant therapy after gastric cancer resection. In the CLASSIC (NCT00411229) trial, 37 centers in South Korea, China, and Taiwan randomly assigned 1,035 patients with stages IIA, IIB, IIIA, or IIIB gastric cancer who had undergone a curative D2 gastrectomy to receive adjuvant chemotherapy (eight 3-week cycles of capecitabine plus oxaliplatin) or follow-up alone after surgery.[12]
    • The 3-year disease-free survival rate was 74% in the chemotherapy group and 59% in the surgery-alone group (HR, 0.56; 95% CI, 0.44–0.72; P < .0001).
    • The 3-year OS was 83% in the chemotherapy group and 78% in the surgery-alone group (HR, 0.72; 95% CI, 0.52–1.00; P = .0493).[12][Level of evidence: 1iiA]
    • Further follow-up is anticipated.

Treatment Options Under Clinical Evaluation for Stages II and III Gastric Cancer

Treatment options under clinical evaluation for stages II and III gastric cancer include the following:

  1. Neoadjuvant chemoradiation therapy was evidenced in the SWOG-S0425 trial and the RTOG-9904 trial.[13]
  2. Perioperative chemotherapy regimens.

All newly diagnosed patients with stages II and III gastric cancer should be considered candidates for clinical trials.

Current Clinical Trials

Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

References:

  1. Brennan MF, Karpeh MS Jr: Surgery for gastric cancer: the American view. Semin Oncol 23 (3): 352-9, 1996.
  2. Cunningham D, Allum WH, Stenning SP, et al.: Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med 355 (1): 11-20, 2006.
  3. Smalley SR, Benedetti JK, Haller DG, et al.: Updated analysis of SWOG-directed intergroup study 0116: a phase III trial of adjuvant radiochemotherapy versus observation after curative gastric cancer resection. J Clin Oncol 30 (19): 2327-33, 2012.
  4. Kitamura K, Yamaguchi T, Sawai K, et al.: Chronologic changes in the clinicopathologic findings and survival of gastric cancer patients. J Clin Oncol 15 (12): 3471-80, 1997.
  5. Bonenkamp JJ, Songun I, Hermans J, et al.: Randomised comparison of morbidity after D1 and D2 dissection for gastric cancer in 996 Dutch patients. Lancet 345 (8952): 745-8, 1995.
  6. Cuschieri A, Fayers P, Fielding J, et al.: Postoperative morbidity and mortality after D1 and D2 resections for gastric cancer: preliminary results of the MRC randomised controlled surgical trial.The Surgical Cooperative Group. Lancet 347 (9007): 995-9, 1996.
  7. Al-Batran S-E, Homann N, Schmalenberg H, et al.: Perioperative chemotherapy with docetaxel, oxaliplatin, and fluorouracil/leucovorin versus epirubicin, cisplatin, and fluorouracil or capecitabine for resectable gastric or gastroesophageal junction adenocarcinoma (FLOT4-AIO): a multicenter, randomized phase 3 trial. [Abstract] J Clin Oncol 35: (Suppl 15): A-4004, 2017.
  8. Kelsen DP: Postoperative adjuvant chemoradiation therapy for patients with resected gastric cancer: intergroup 116. J Clin Oncol 18 (21 Suppl): 32S-4S, 2000.
  9. Fuchs CS, Niedzwiecki D, Mamon HJ, et al.: Adjuvant Chemoradiotherapy With Epirubicin, Cisplatin, and Fluorouracil Compared With Adjuvant Chemoradiotherapy With Fluorouracil and Leucovorin After Curative Resection of Gastric Cancer: Results From CALGB 80101 (Alliance). J Clin Oncol 35 (32): 3671-3677, 2017.
  10. Cats A, Jansen EPM, van Grieken NCT, et al.: Chemotherapy versus chemoradiotherapy after surgery and preoperative chemotherapy for resectable gastric cancer (CRITICS): an international, open-label, randomised phase 3 trial. Lancet Oncol 19 (5): 616-628, 2018.
  11. Sakuramoto S, Sasako M, Yamaguchi T, et al.: Adjuvant chemotherapy for gastric cancer with S-1, an oral fluoropyrimidine. N Engl J Med 357 (18): 1810-20, 2007.
  12. Bang YJ, Kim YW, Yang HK, et al.: Adjuvant capecitabine and oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): a phase 3 open-label, randomised controlled trial. Lancet 379 (9813): 315-21, 2012.
  13. Ajani JA, Winter K, Okawara GS, et al.: Phase II trial of preoperative chemoradiation in patients with localized gastric adenocarcinoma (RTOG 9904): quality of combined modality therapy and pathologic response. J Clin Oncol 24 (24): 3953-8, 2006.

Stage IV, Inoperable, and Recurrent Gastric Cancer

Standard Treatment Options for Stage IV, Inoperable, and Recurrent Gastric Cancer

Standard treatment options for stage IV, inoperable, and recurrent gastric cancer, including medically or surgically unresectable patients, include the following:

  1. First-line palliative systemic therapy with:
    1. Palliative chemotherapy.
      • Fluorouracil (5-FU).[1,2,3]
      • Epirubicin, cisplatin, and 5-FU (ECF).[4,5]
      • Epirubicin, oxaliplatin, and capecitabine (EOX).[6]
      • Cisplatin and 5-FU (CF).[7,3]
      • 5-FU, leucovorin, and oxaliplatin.[8]
      • Docetaxel, cisplatin, and 5-FU.[9]
      • Etoposide, leucovorin, and 5-FU (ELF).[10]
      • 5-FU, leucovorin, and irinotecan.[11]
    2. Trastuzumab with chemotherapy in patients with HER2-positive tumors (3+ on immunohistochemistry [IHC] or fluorescence in situ hybridization [FISH]-positive).
  2. Second-line palliative systemic therapy.
    • Palliative chemotherapy.
    • Ramucirumab with or without chemotherapy.
  3. Immunotherapy.
    1. Second-line treatment for patients with defective mismatch repair (dMMR) or microsatellite instability-high (MSI-H) tumors.
    2. Third-line treatment for patients with programmed death ligand 1 (PD-L1)‒positive tumors.
      • Pembrolizumab.
      • Nivolumab.
  4. Endoluminal laser therapy, endoluminal stent placement, or gastrojejunostomy, may be helpful to patients with gastric obstruction.[12]
  5. Palliative radiation therapy may alleviate bleeding, pain, and obstruction.
  6. Palliative resection is reserved for patients with continued bleeding or obstruction.

First-line palliative systemic therapy

Palliative chemotherapy

Standard chemotherapy versus best supportive care for patients with metastatic gastric cancer has been tested in several clinical trials, and there is general agreement that patients who receive chemotherapy live for several months longer on average than patients who receive supportive care.[13,14,15][Level of evidence: 1iiA] During the last 20 years, multiple randomized studies evaluating different treatment regimens (monotherapy vs. combination chemotherapy) have been performed in patients with metastatic gastric cancer with no clear consensus emerging as to the best management approach. A meta-analysis of these studies demonstrated a hazard ratio (HR) of 0.83 for overall survival (OS) (95% confidence interval [CI], 0.74–0.93) in favor of combination chemotherapy.[16]

Evidence (palliative chemotherapy):

  1. Of all the combination regimens, ECF is often considered the reference standard in the United States and Europe. In one European trial, 274 patients with metastatic esophagogastric cancer were randomly assigned to receive either ECF or 5-FU, doxorubicin, and methotrexate (FAMTX).[17]
    • The group who received ECF had a significantly longer median survival (8.9 vs. 5.7 months, P = .0009) than the FAMTX group.[17][Level of evidence: 1iiA]
  2. In a second trial that compared ECF with mitomycin, cisplatin, and 5-FU (MCF), there was no statistically significant difference in median survival (9.4 vs. 8.7 months, P = .315).[5][Level of evidence: 1iiA]
  3. Oxaliplatin and capecitabine are often substituted for cisplatin and 5-FU within the ECF regimen on the basis of results from the REAL-2 trial (ISRCTN51678883).[6] This randomized trial of 1,002 patients with advanced esophageal, gastroesophageal (GE) junction, or gastric cancer utilized a 2 × 2 design to demonstrate noninferior median OS in patients treated with capecitabine rather than 5-FU (HRdeath = 0.86; 95% CI, 0.82–0.99) and in patients treated with oxaliplatin in place of cisplatin (HRdeath = 0.92; 95% CI, 0.80–1.10).
  4. An international collaboration of investigators randomly assigned 445 patients with metastatic gastric cancer to receive docetaxel, cisplatin, and 5-FU (DCF) or CF.[18] Time-to-treatment progression (TTP) was the primary endpoint.
    • Patients who received DCF experienced a significantly longer TTP (5.6 months; 95% CI, 4.9–5.9; vs. 3.7 months; 95% CI, 3.4–4.5; HR, 1.47; 95% CI, 1.19–1.82; log-rank P < .001; risk reduction 32%).
    • The median OS was significantly longer for patients who received DCF compared with patients who received CF (9.2 months; 95% CI, 8.4–10.6; vs. 8.6 months; 95% CI, 7.2–9.5; HR, 1.29; 95% CI, 1.0–1.6; log-rank P = .02; risk reduction = 23%).[18][Level of evidence: 1iiA]
    • There were high toxicity rates in both arms.[19]
    • Febrile neutropenia was more common in patients who received DCF (29% vs. 12%), and the death rate on the study was 10.4% for patients on the DCF arm and 9.4% for patients on the CF arm.
  5. Whether the CF regimen should be considered as an index regimen for the treatment of patients with metastatic gastric cancer is the subject of debate.[19] The results of a study that randomly assigned 245 patients with metastatic gastric cancer to receive CF, FAMTX, or ELF demonstrated no significant difference in response rate, progression-free survival, or OS between the arms.[7]
    • Grades 3 and 4 neutropenia occurred in 35% to 43% of patients on all arms, but severe nausea and vomiting was more common in patients in the CF arm and occurred in 26% of those patients.[7][Level of evidence: 1iiDiv]

Phase II studies evaluating irinotecan-based or oxaliplatin-based regimens demonstrate similar response rates and TTP to those found with ECF or CF, but the former may be less toxic.[20,21,22,23,24,25] There are conflicting data regarding relative efficacy of any one regimen. Ongoing studies are evaluating these newer regimens.

Trastuzumab

Trastuzumab may be combined with first-line chemotherapy agents in treatment of HER2-positive metastatic gastric adenocarcinomas. HER2 testing is recommended for those with metastatic disease.

Evidence (trastuzumab):

  1. In the open-label, international phase III Trastuzumab for Gastric Cancer trial (ToGA [NCT01041404]) , patients with HER2-positive metastatic, inoperable locally advanced, or recurrent gastric or GE junction cancer were randomly assigned to chemotherapy with or without the anti-HER2 monoclonal antibody trastuzumab.[26] HER2 positivity was defined as either 3+ staining by IHC or a HER2 to CEP17 ratio of two or more using FISH. Tumors from 3,665 patients were HER2 tested; of the patients, 810 were positive (22%) and 594 met eligibility criteria for randomization. Chemotherapy consisted of cisplatin plus 5-FU or capecitabine chosen at the investigator’s discretion. The study treatment was administered every 3 weeks for six cycles, and trastuzumab was continued every 3 weeks until disease progression, unacceptable toxicity, or withdrawal of consent. Crossover to trastuzumab at disease progression was not permitted.
    • Median OS was 13.8 months (95% CI, 12–16) in patients assigned to trastuzumab and 11.1 months (95% CI, 10–13) in patients assigned to chemotherapy alone (HR, 0.74; 95% CI, 0.60–0.91; P = .0046).[26][Level of evidence: 1iiA]
    • There was no significant difference in rates of any adverse event, and cardiotoxic effects were equally rare in both arms.

Second-line palliative systemic therapy

Palliative chemotherapy

When patients develop progression of disease after first-line palliative chemotherapy, there is no standard treatment option. Accepted regimens include irinotecan with or without 5-FU/leucovorin, docetaxel, and paclitaxel with or without ramucirumab. (Refer to the Ramucirumab section of this summary for more information.)

Evidence (palliative chemotherapy):

  1. Investigators in Korea randomly assigned patients with advanced gastric cancer who had received one or two chemotherapy regimens previously that involved both a fluoropyrimidine and a platinum agent to either salvage chemotherapy or best supportive care in a 2:1 fashion.[27] Salvage chemotherapy consisted of either docetaxel (60 mg/m2 every 3 weeks) or irinotecan (150 mg/m2 every 2 weeks) and was left to the discretion of the treating physicians. Of the 202 patients enrolled, 133 received salvage chemotherapy and 69 received best supportive care.
    • Median OS was 5.3 months in the group that received salvage chemotherapy and 3.8 months in the group that received best supportive care (HR, 0.657; P = .007).
    • There was no difference in median OS between docetaxel and irinotecan (5.2 months vs. 6.5 months, P = .116).[27][Level of evidence: 1iiA]

Ramucirumab

Ramucirumab is a fully humanized monoclonal antibody directed against the vascular endothelial growth factor receptor-2.

Evidence (ramucirumab):

  1. In the international, phase III, placebo-controlled, REGARD trial (NCT00917384), 355 patients with stage IV gastric or GE junction cancer who had progressed on a first-line 5-FU‒ or platinum-containing regimen were randomly assigned in a 2:1 fashion to ramucirumab or placebo.[28]
    • Patients who were assigned to ramucirumab had a significantly improved median OS of 5.2 months compared with patients assigned to the placebo who had a median OS of 3.8 months (HR, 0.776; P = .047).
    • Rates of hypertension were higher in the ramucirumab group than in the placebo group.[28][Level of evidence: 1iiA]

    Ramucirumab is an acceptable treatment in cisplatin- or 5-FU‒refractory, stage IV, gastric cancer.

  2. In the international, double-blinded, phase III RAINBOW trial (NCT01170663), 665 patients were randomly assigned to receive paclitaxel (80 mg/m2) on days 1, 8, and 15 every 28 days with ramucirumab (8 mg/kg) added on days 1 and 15 or a placebo added on days 1 and 15.[29]
    • Patients assigned to ramucirumab had a significant improvement in median OS of 9.6 months compared with patients assigned to a placebo who had a median OS of 7.4 months (HR, 0.807; P = .017).
    • Grade 3 or higher neutropenia, fatigue, hypertension, and abdominal pain were more common in the ramucirumab group.[29][Level of Evidence: 1iA]

    The combination of paclitaxel and ramucirumab is an acceptable second-line-chemotherapy regimen in patients with stage IV gastric or GE junction cancer.

Immunotherapy

Checkpoint inhibitors, particularly programmed death 1 (PD-1) inhibitors, are actively being investigated in the management of gastric and GE cancers. Testing for dMMR (IHC staining) or MSI polymerase chain reaction, along with PD-L1 combined positive score (CPS score in the United States) is recommended for patients with metastatic gastric adenocarcinoma.

Second-line treatment for patients with dMMR or MSI-H tumors

Evidence (second-line treatment for patients with dMMR or MSI-H tumors):

  1. In a phase II study of pembrolizumab in patients with colon cancer with or without dMMR, and noncolorectal cancer with dMMR, immune-related objective response rate was 71% (5 of 7 patients). Based upon these data, pembrolizumab has been approved for patients with dMMR solid tumors that have progressed after prior treatment and who have no satisfactory alternative treatment options.

Third-line treatment for patients with PD-L1–positive tumors

Pembrolizumab

Evidence (pembrolizumab):

  1. In the phase II KEYNOTE-059 trial (NCT02335411), 259 patients with recurrent or metastatic gastric/GE adenocarcinomas who had progressed on at least two prior chemotherapy regimens were treated with pembrolizumab (200 mg every 3 weeks).[30] Of these patients, 57.1% had PD-L1–positive tumors (evaluated by the PD-L1 IHC 22C3 pharmDx Kit [Dako] with combined positive score ≥1).
    • Overall objective response rate for all tumors was 11.6%, with 2.3% complete response (CR). Among PD-L1–positive disease tumors, the objective response rate was 15.5%, with a 2.0% CR.[30][Level of evidence: 2Div]

On the basis of these data, the U.S. Food and Drug Administration has granted pembrolizumab accelerated approval for PD-L1–positive tumors.

Nivolumab

Evidence (nivolumab):

  1. A randomized, double-blinded, placebo-controlled, phase III trial (ONO-4538-12 [ATTRACTION-2] [NCT02267343]), enrolled 493 patients with refractory GE/gastric cancer from Japan, South Korea, and Taiwan.[31] Patients were randomly assigned 2:1 to receive nivolumab (3mg/kg every 2 weeks) or placebo.
    • The median OS in the nivolumab group was 5.26 months (95% CI, 4.60–6.37) compared with 4.14 months with a placebo (95% CI, 3.42–4.86).
    • Serious treatment–related adverse events occurred in 10% of the patients.[31][Level of evidence: 1iA]

On the basis of these data, the Japanese Ministry of Health, Labor, and Welfare approved nivolumab for treatment of advanced gastric cancer that has progressed on previously received chemotherapy.

Treatment Options Under Clinical Evaluation for Stage IV, Inoperable, and Recurrent Gastric Cancer

Treatment options under clinical evaluation for stage IV, inoperable, and recurrent gastric cancer include the following:

  1. Palliative chemotherapy with FLOT (docetaxel, oxaliplatin, and 5-FU/leucovorin).
  2. Regorafenib.
  3. Cytoreductive surgery and heated intraperitoneal chemotherapy (HIPEC).

Treatment with poly (ADP-ribose) polymerase (PARP) inhibitors and hepatocyte growth factor inhibitors have not shown efficacy at this time.

Current Clinical Trials

Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

References:

  1. Comis RL, Carter SK: Integration of chemotherapy into combined modality therapy of solid tumors. IV. Malignant melanoma. Cancer Treat Rev 1 (4): 285-304, 1974.
  2. Cullinan SA, Moertel CG, Fleming TR, et al.: A comparison of three chemotherapeutic regimens in the treatment of advanced pancreatic and gastric carcinoma. Fluorouracil vs fluorouracil and doxorubicin vs fluorouracil, doxorubicin, and mitomycin. JAMA 253 (14): 2061-7, 1985.
  3. Ohtsu A, Shimada Y, Shirao K, et al.: Randomized phase III trial of fluorouracil alone versus fluorouracil plus cisplatin versus uracil and tegafur plus mitomycin in patients with unresectable, advanced gastric cancer: The Japan Clinical Oncology Group Study (JCOG9205). J Clin Oncol 21 (1): 54-9, 2003.
  4. Waters JS, Norman A, Cunningham D, et al.: Long-term survival after epirubicin, cisplatin and fluorouracil for gastric cancer: results of a randomized trial. Br J Cancer 80 (1-2): 269-72, 1999.
  5. Ross P, Nicolson M, Cunningham D, et al.: Prospective randomized trial comparing mitomycin, cisplatin, and protracted venous-infusion fluorouracil (PVI 5-FU) With epirubicin, cisplatin, and PVI 5-FU in advanced esophagogastric cancer. J Clin Oncol 20 (8): 1996-2004, 2002.
  6. Cunningham D, Starling N, Rao S, et al.: Capecitabine and oxaliplatin for advanced esophagogastric cancer. N Engl J Med 358 (1): 36-46, 2008.
  7. Vanhoefer U, Rougier P, Wilke H, et al.: Final results of a randomized phase III trial of sequential high-dose methotrexate, fluorouracil, and doxorubicin versus etoposide, leucovorin, and fluorouracil versus infusional fluorouracil and cisplatin in advanced gastric cancer: A trial of the European Organization for Research and Treatment of Cancer Gastrointestinal Tract Cancer Cooperative Group. J Clin Oncol 18 (14): 2648-57, 2000.
  8. Al-Batran S-E, Homann N, Schmalenberg H, et al.: Perioperative chemotherapy with docetaxel, oxaliplatin, and fluorouracil/leucovorin versus epirubicin, cisplatin, and fluorouracil or capecitabine for resectable gastric or gastroesophageal junction adenocarcinoma (FLOT4-AIO): a multicenter, randomized phase 3 trial. [Abstract] J Clin Oncol 35: (Suppl 15): A-4004, 2017.
  9. Van Cutsem E, Moiseyenko VM, Tjulandin S, et al.: Phase III study of docetaxel and cisplatin plus fluorouracil compared with cisplatin and fluorouracil as first-line therapy for advanced gastric cancer: a report of the V325 Study Group. J Clin Oncol 24 (31): 4991-7, 2006.
  10. Ajani JA, Ota DM, Jackson DE: Current strategies in the management of locoregional and metastatic gastric carcinoma. Cancer 67 (1 Suppl): 260-5, 1991.
  11. Guimbaud R, Louvet C, Ries P, et al.: Prospective, randomized, multicenter, phase III study of fluorouracil, leucovorin, and irinotecan versus epirubicin, cisplatin, and capecitabine in advanced gastric adenocarcinoma: a French intergroup (Fédération Francophone de Cancérologie Digestive, Fédération Nationale des Centres de Lutte Contre le Cancer, and Groupe Coopérateur Multidisciplinaire en Oncologie) study. J Clin Oncol 32 (31): 3520-6, 2014.
  12. Ell C, Hochberger J, May A, et al.: Coated and uncoated self-expanding metal stents for malignant stenosis in the upper GI tract: preliminary clinical experiences with Wallstents. Am J Gastroenterol 89 (9): 1496-500, 1994.
  13. Murad AM, Santiago FF, Petroianu A, et al.: Modified therapy with 5-fluorouracil, doxorubicin, and methotrexate in advanced gastric cancer. Cancer 72 (1): 37-41, 1993.
  14. Pyrhönen S, Kuitunen T, Nyandoto P, et al.: Randomised comparison of fluorouracil, epidoxorubicin and methotrexate (FEMTX) plus supportive care with supportive care alone in patients with non-resectable gastric cancer. Br J Cancer 71 (3): 587-91, 1995.
  15. Glimelius B, Ekström K, Hoffman K, et al.: Randomized comparison between chemotherapy plus best supportive care with best supportive care in advanced gastric cancer. Ann Oncol 8 (2): 163-8, 1997.
  16. Wagner AD, Grothe W, Haerting J, et al.: Chemotherapy in advanced gastric cancer: a systematic review and meta-analysis based on aggregate data. J Clin Oncol 24 (18): 2903-9, 2006.
  17. Webb A, Cunningham D, Scarffe JH, et al.: Randomized trial comparing epirubicin, cisplatin, and fluorouracil versus fluorouracil, doxorubicin, and methotrexate in advanced esophagogastric cancer. J Clin Oncol 15 (1): 261-7, 1997.
  18. Ajani JA, Moiseyenko VM, Tjulandin S, et al.: Clinical benefit with docetaxel plus fluorouracil and cisplatin compared with cisplatin and fluorouracil in a phase III trial of advanced gastric or gastroesophageal cancer adenocarcinoma: the V-325 Study Group. J Clin Oncol 25 (22): 3205-9, 2007.
  19. Ilson DH: Docetaxel, cisplatin, and fluorouracil in gastric cancer: does the punishment fit the crime? J Clin Oncol 25 (22): 3188-90, 2007.
  20. Ilson DH, Saltz L, Enzinger P, et al.: Phase II trial of weekly irinotecan plus cisplatin in advanced esophageal cancer. J Clin Oncol 17 (10): 3270-5, 1999.
  21. Beretta E, Di Bartolomeo M, Buzzoni R, et al.: Irinotecan, fluorouracil and folinic acid (FOLFIRI) as effective treatment combination for patients with advanced gastric cancer in poor clinical condition. Tumori 92 (5): 379-83, 2006 Sep-Oct.
  22. Pozzo C, Barone C, Szanto J, et al.: Irinotecan in combination with 5-fluorouracil and folinic acid or with cisplatin in patients with advanced gastric or esophageal-gastric junction adenocarcinoma: results of a randomized phase II study. Ann Oncol 15 (12): 1773-81, 2004.
  23. Bouché O, Raoul JL, Bonnetain F, et al.: Randomized multicenter phase II trial of a biweekly regimen of fluorouracil and leucovorin (LV5FU2), LV5FU2 plus cisplatin, or LV5FU2 plus irinotecan in patients with previously untreated metastatic gastric cancer: a Federation Francophone de Cancerologie Digestive Group Study–FFCD 9803. J Clin Oncol 22 (21): 4319-28, 2004.
  24. Ajani JA, Baker J, Pisters PW, et al.: CPT-11 plus cisplatin in patients with advanced, untreated gastric or gastroesophageal junction carcinoma: results of a phase II study. Cancer 94 (3): 641-6, 2002.
  25. Cavanna L, Artioli F, Codignola C, et al.: Oxaliplatin in combination with 5-fluorouracil (5-FU) and leucovorin (LV) in patients with metastatic gastric cancer (MGC). Am J Clin Oncol 29 (4): 371-5, 2006.
  26. Bang YJ, Van Cutsem E, Feyereislova A, et al.: Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376 (9742): 687-97, 2010.
  27. Kang JH, Lee SI, Lim do H, et al.: Salvage chemotherapy for pretreated gastric cancer: a randomized phase III trial comparing chemotherapy plus best supportive care with best supportive care alone. J Clin Oncol 30 (13): 1513-8, 2012.
  28. Fuchs CS, Tomasek J, Yong CJ, et al.: Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 383 (9911): 31-9, 2014.
  29. Wilke H, Muro K, Van Cutsem E, et al.: Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol 15 (11): 1224-35, 2014.
  30. Fuchs CS, Doi T, Jang RW, et al.: Safety and Efficacy of Pembrolizumab Monotherapy in Patients With Previously Treated Advanced Gastric and Gastroesophageal Junction Cancer: Phase 2 Clinical KEYNOTE-059 Trial. JAMA Oncol 4 (5): e180013, 2018.
  31. Kang YK, Boku N, Satoh T, et al.: Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390 (10111): 2461-2471, 2017.

Changes to This Summary (05 / 02 / 2019)

The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.

General Information About Gastric Cancer

Added text to the list of gastric cancer risk factors to include Epstein-Barr virus and familial syndromes.

Treatment Option Overview

This section was extensively revised.

Stage 0 Gastric Cancer

This section was extensively revised.

Stage I Gastric Cancer

Added Smalley et al. as reference 2.

Added Endoscopic mucosal resection as a new subsection.

Revised text to state that with more than 10 years of follow, median survival was 35 months for the adjuvant chemoradiation therapy group and 27 months for the surgery-alone arm. Added that median relapse-free survival was 27 months in the chemoradiation arm compared with 19 months in the surgery-alone arm; improvement was primarily seen for locoregional recurrence risk.

Stages II and III Gastric Cancer

This section was extensively revised; it was renamed from Stage II Gastric Cancer.

Stage IV, Inoperable, and Recurrent Gastric Cancer

This section was extensively revised; it was renamed from Stage IV and Recurrent Gastric Cancer.

This summary is written and maintained by the PDQ Adult Treatment Editorial Board, which is editorially independent of NCI. The summary reflects an independent review of the literature and does not represent a policy statement of NCI or NIH. More information about summary policies and the role of the PDQ Editorial Boards in maintaining the PDQ summaries can be found on the About This PDQ Summary and PDQ® – NCI’s Comprehensive Cancer Database pages.

About This PDQ Summary

Purpose of This Summary

This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the treatment of gastric cancer. It is intended as a resource to inform and assist clinicians who care for cancer patients. It does not provide formal guidelines or recommendations for making health care decisions.

Reviewers and Updates

This summary is reviewed regularly and updated as necessary by the PDQ Adult Treatment Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).

Board members review recently published articles each month to determine whether an article should:

  • be discussed at a meeting,
  • be cited with text, or
  • replace or update an existing article that is already cited.

Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.

The lead reviewer for Gastric Cancer Treatment is:

  • Valerie Lee, MD (Johns Hopkins University)

Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website’s Email Us. Do not contact the individual Board Members with questions or comments about the summaries. Board members will not respond to individual inquiries.

Levels of Evidence

Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Adult Treatment Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.

Permission to Use This Summary

PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary].”

The preferred citation for this PDQ summary is:

PDQ® Adult Treatment Editorial Board. PDQ Gastric Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/stomach/hp/stomach-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389209]

Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in Visuals Online, a collection of over 2,000 scientific images.

Disclaimer

Based on the strength of the available evidence, treatment options may be described as either “standard” or “under clinical evaluation.” These classifications should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.

Contact Us

More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s Email Us.

Last Revised: 2019-05-02

This information does not replace the advice of a doctor. Healthwise, Incorporated, disclaims any warranty or liability for your use of this information. Your use of this information means that you agree to the Terms of Use. Learn how we develop our content.